Development of a robust DNA quality and quantity assessment qPCR assay for targeted next-generation sequencing library preparation
نویسندگان
چکیده
Next-generation sequencing (NGS) is becoming a standard for genetic analyses of clinical samples. DNAs retrieved from formalin-fixed, paraffin-embedded (FFPE) tissue specimens are commonly degraded, and specimens such as core biopsies are sometimes too small to obtain enough DNA for NGS applications. Thus, it is important to measure both the DNA quantity and quality accurately from clinical samples. However, there is no standard method for DNA quantity and quality analyses for NGS library preparation. We tested four different methods (PicoGreen, Qubit® fluorometry, TaqMan and SYBR-Green-based qPCR assay) and compared each to RNase P TaqMan as a reference control. We found that SYBR-Green-based qPCR assay provides a consistent and accurate DNA quantification while keeping its cost relatively low and the throughput high. We designed a dual-probe SYBR-Green qPCR assay for DNA quantity and quality assessment for targeted NGS library preparation. This assay provides a Dscore (degradation score) of the interrogated DNA by analyzing two different sizes of amplicons. We show an example of a clinical sample with a very high Dscore (high degradation). With a regular DNA quantification, without considering the degradation status, no correct NGS libraries were obtained. However, after optimizing the library condition by considering its poor DNA quality, a reasonably good library and sequencing results were obtained. In summary, we developed and presented a new DNA quantity and quality analysis qPCR assay for the targeted NGS library preparation. This assay may be mostly efficient for the clinical samples with high degradation and poor DNA quality.
منابع مشابه
Strategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملStrategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملLibrary construction for next-generation sequencing: overviews and challenges.
High-throughput sequencing, also known as next-generation sequencing (NGS), has revolutionized genomic research. In recent years, NGS technology has steadily improved, with costs dropping and the number and range of sequencing applications increasing exponentially. Here, we examine the critical role of sequencing library quality and consider important challenges when preparing NGS libraries fro...
متن کاملSemi-Automated Library Preparation for High-Throughput DNA Sequencing Platforms
Next-generation sequencing platforms are powerful technologies, providing gigabases of genetic information in a single run. An important prerequisite for high-throughput DNA sequencing is the development of robust and cost-effective preprocessing protocols for DNA sample library construction. Here we report the development of a semi-automated sample preparation protocol to produce adaptor-ligat...
متن کاملBioruptor® NGS: Unbiased DNA shearing for Next-Generation Sequencing
Wouter Coppieters, PhD, and his colleagues operate the genomics core facility at the GIGA center, University of Liège (Belgium). The center routinely performs a variety of Next-Generation Sequencing (NGS) applications including de novo sequencing, whole genome and amplicon sequencing, and targeted resequencing on an Illumina GAIIx analyzer. Coppieters recognizes that optimal sequencing results ...
متن کامل